CHAPTER 3. Inference on Clause Graphs
3.1 Types of Parallelism in Deductive Inference
3.2. The Sequential Inference Algorithm in Color Clause Graphs
3.3. Parallelism in Deductive Inference on C-Graphs
3.4. The Efficiency Comparison of Deductive Inference Procedures

CHAPTER 4. Inference on Analytic Tableaux
4.1. The Method of Analytic Tableaux for Propositional Logic
4.2. The Method of Analytic Tableaux for First-Order Predicate Logic
4.3. The Method of Analytic Tableaux in Logic Programming
4.3.1. Implementation of the Method of Analytic Tableaux for Propositional Logic in Prolog
4.3.2. Implementation of the Method of Analytic Tableaux for First-Order Predicate Logic
4.3.2.1. Unification Algorithm
4.3.2.2. Analytic Tableaux with Free Variables
4.3.2.3. Implementation of the Unification Algorithm in Prolog
4.3.2.4. Implementation of the Method of Analytic Tableaux for First-Order Logic in Prolog

CHAPTER 5. Inference in Hierarchical Structures
5.1. Multi-level Order-Sorted Algebra
5.1.1. The Necessity of Designing the Inference Engines in Hierarchical Structures
5.1.2. Introduction in Multi-level Algebra
5.1.3. Simulating the Subtypes and Inheritance
5.1.4. Describing Parametric Polymorphism by the Apparatus of Two-level Algebra
5.2. Multi-layer Logic as a Knowledge Representation Language in Intelligent Systems
5.2.1. The Ways of Setting up the Hierarchical Structures in Multi-layer Logic
5.2.2. Syntax of Multi-layer Logic
5.2.3. Describing Two Types of Hierarchical Abstraction and Hierarchical Structure by a Set of Well-formed Formulas of Multi-layer Logic
5.2.4. Logic Inference in Multi-layer Logic
5.2.4.1. Scolemization Algorithm
5.2.4.2. Unification Algorithm
5.2.4.3. Peculiarities of Using Input Resolution in Multi-layer Logic
5.2.4.4. Hierarchical Abstraction and Production Model
5.3. The System of Simulating a Problem Domain (Knowledge Model - KM)
5.3.1. Assignment and the Structure of the KM System
5.3.2. The Conceptual Language of Describing a Complex Structured Problem Domain
5.3.3. Implementation of the KM System
CHAPTER 9. Logic Programs with Two Negations

9.3.2. Paraconsistent WFSX
9.3.3. Declarative Revisions
9.3.4. Supporting and Deleting Inconsistency

9.5. WFSX, Semantics of Logic Programs with Two Negations
And Autoepistemic Logic
9.4.1. Generic Semantics for Programs with Two Kinds of Negation
9.4.1.1. Properties of \(\neg\)-negation
9.4.1.2. Fixing the Set AX\(\neg\) and the Condition not\(\text{cond}(L)\)
9.4.1.3. Logic Programs with \(\neg\)-Negation and Disjunction
9.4.2. Autoepistemic Logics for WFSX
9.4.2.1. Moore’s and Przymusinski’s Autoepistemic Logics
9.4.2.2. A Logic of Belief and Provability
9.4.2.3. Further Developments

9.5. WFSX and Default Logic
9.5.1. The Language of Defaults
9.5.1.1. Reiter’s Default Semantics
9.5.1.2. Well-founded and Stationary Default Semantics for Normal Logic Programs
9.5.2. Some Necessary Principles for the Default Theory
9.5.3. \(\Omega\)-Default Theory
9.5.4. Comparison with Reiter’s Semantics
9.5.5. Comparison with Stationary Default Semantics
9.5.6. Link of Semantics of Default Theory and Logic

9.5.7. The Definition of WFSX Based on \(\Gamma\)

CHAPTER 10. Argumentation Systems and Abductive Reasoning

10.1. Defeasible Argumentation Systems
10.1.1. Foundations of Argumentation Theory
10.1.1.1. Main Properties of Semantics Based on Arguments
10.1.1.2. Assignment of Unique Status to an Argument
10.1.1.3. Assignment of Multiple Status to Arguments
10.1.1.4. Comparison of Approaches of Unique and Multiple Status Assignment to Arguments
10.1.2. Overview of Argumentation Systems

10.2. Organization of Abductive Inference
10.2.4. Notion of Abductive Inference
10.2.5. Approaches to Abduction Characterization
10.2.2.1. Approaches Based on Set Covering
10.2.2.2. Approaches Based on Logic
10.2.2.3. An Approach on a Knowledge Level
10.2.6. Approaches to Computing Abductive Explanations
10.2.3.1. Approaches to Hypotheses Generation
10.2.3.2. Approaches to Hypotheses Choice
10.2.7. The Method of Probabilistic Abductive Reasoning in Complex Structured Problem Domains

10.2.4.1. Basic Definitions
10.2.4.2. Description of the The Method of Probabilistic Abductive Reasoning in Complex Structured Problem Domains
10.2.4.3. Algorithms of Probabilistic Abductive Reasoning in Complex Structured Problem Domains
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.4.4. The Checking Procedure of Founded Explanations on Consistence</td>
<td>377</td>
</tr>
<tr>
<td>10.2.4.5. Examples of Applying the Designed Algorithms of Abductive Inference in Complex Structured Problem Domains</td>
<td>378</td>
</tr>
<tr>
<td>10.3. Abduction and Argumentation in Logic Programming</td>
<td>383</td>
</tr>
<tr>
<td>10.3.1. Argumentation Semantics of Logic Programs and Its Computation</td>
<td>383</td>
</tr>
<tr>
<td>10.3.1.1. Preferable Expansions and Semantics of Admissibility</td>
<td>384</td>
</tr>
<tr>
<td>10.3.1.2. Stable Theories and Semantics of Weak Stability</td>
<td>385</td>
</tr>
<tr>
<td>10.3.1.3. Semantics of Acceptability</td>
<td>386</td>
</tr>
<tr>
<td>10.3.1.4. Semantics of Well-Founded Models</td>
<td>387</td>
</tr>
<tr>
<td>10.3.1.5. The Proof Procedure for Argumentation Semantics</td>
<td>389</td>
</tr>
<tr>
<td>10.3.3. The Role of Argumentation in Organization of Abductive Inference</td>
<td>394</td>
</tr>
<tr>
<td>PART III. INDUCTION AND GENERALIZATION</td>
<td>400</td>
</tr>
</tbody>
</table>

CHAPTER 11. Basic Principles of Building Learning and Decision-Making Systems

- 11.1. Decision Support Systems | 402 |
- 11.2. Problems of Knowledge Extraction from Databases | 405 |
- 11.3. The Ways of Original Information Representation in Intelligent Systems | 410 |
- 11.4. Structure-Logic Generalization Methods | 414 |

CHAPTER 12. The Problem of Learning a Teacher Free

- 12.1. The Algorithm Based on the Notion of a Threshold Distance | 422 |
- 12.2. MAXMIN Algorithm | 425 |
- 12.3. The «K middle» Algorithm | 427 |
- 12.4. Recognition with Using the Decision Functions | 430 |
- 12.4.1. Building Decision Functions on a Criterion of a Minimal Distance | 430 |
- 12.4.2. Dividing Decision Functions | 431 |
- 12.4.3. Linear Decision Functions | 433 |
- 12.4.4. Building a Decision Function by the Potential Method | 436 |
- 12.5. Recognition Based on Rough Features | 439 |

CHAPTER 13. Learning with a Teacher

- 13.1. Setting up the Problem | 441 |
- 13.2. The DREV Algorithm | 445 |
- 13.3. Building a Decision Tree with Using Hamming’s Metrics | 447 |
- 13.4. Induction of Decision Trees | 449 |
- 13.5. Modification of the Quinlan’s Algorithm – ID5R | 453 |
- 13.6. The Reduce Algorithm | 458 |
- 13.7. Focusing | 461 |
- 13.8. The EG2 Algorithm | 466 |

CHAPTER 14. Inductive Methods for the Case of Incomplete Information

- 14.1. Problems of Knowledge Extraction from Databases | 472 |
- 14.1.1. Limited Information | 472 |
- 14.1.2. Distorted Information | 473 |
- 14.1.3. The Large Volume of Databases | 473 |